Magnesium vs. Magnesium Oxide Targets – Which One Gets Better Film on Silicon? High-quality thin films play a big role in electronic and optical devices. Over the years, the choice of sputtering target has been shown to significantly influence film properties. When depositing magnesium oxide films on silicon, the selected target—either pure magnesium or magnesium...Continue Reading
Back in 2019, we published a guide comparing platinum and gold rings. It quickly became one of our most-read articles, helping readers make informed choices about their wedding jewelry. But times have changed — and so have the reasons behind choosing one metal over the other. If you’re shopping in 2025, here’s what actually matters....Continue Reading
1. Introduction Refractory metals like tantalum (Ta) and niobium (Nb) play an increasingly important role in thin film technology, particularly for environments that demand both high-temperature stability and corrosion resistance. These two elements, known for their exceptionally high melting points and strong chemical inertness, have found widespread use in advanced protective coatings. As industries such...Continue Reading
1. Introduction to PVD and CVD Physical vapor deposition (PVD) and chemical vapor deposition (CVD) are two essential thin-film deposition techniques widely used in semiconductors, tooling, optics, and clean energy. PVD relies on physical transformation (solid to vapor to solid), while CVD creates coatings through chemical reactions on the substrate surface. 2. Technical Comparison Table...Continue Reading
Introduction Background of Sputtering Technology Thin film deposition is a cornerstone in the fabrication of modern technological devices. From electronic components to optical coatings, the demand for high-quality thin films has surged, driving advancements in deposition techniques. Among these, sputtering has emerged as a versatile and reliable method, offering precise control over film composition and...Continue Reading
Physical Vapor Deposition (PVD) is a widely used technique in various industries, such as electronics, optics, and materials science. It is crucial for depositing thin films onto substrates, which are essential in the manufacturing of components like semiconductors, mirrors, and solar panels. The quality, thickness, adhesion, and performance of the thin film depend largely on...Continue Reading
Introduction Dielectric substrates are indispensable materials in modern electronic devices. They play a crucial role in supporting circuits, optimizing electromagnetic performance, and protecting components. As technology advances, dielectric substrates have evolved to include a diverse range of materials with tailored properties, meeting the demands of various applications such as microwave circuits, antenna designs, and sensor...Continue Reading
1. Introduction Sputtering is a key technology for thin-film deposition. It was first introduced in 1852 to deposit metals that couldn’t be applied through thermal evaporation. Over time, sputtering technology has advanced, leading to the development of magnetron sputtering. Magnetron sputtering uses magnetic fields to control the movement of electrons. This improves the process by...Continue Reading
Sputtering is a widely used process in various industries, from electronics to optics. High-temperature sputtering targets are essential for applications that require materials to perform under extreme conditions. Here are the top ten sputtering target materials known for their ability to withstand high temperatures, listed from highest to lowest melting point. 1. Tungsten Sputtering Target...Continue Reading