Introduction One of SAM’s long-term clients—a major display panel manufacturer—was experiencing frequent production disruptions. The culprit: cracking and uneven wear in their ITO sputtering targets, used in the thin-film deposition process for smartphone and tablet displays. After reviewing the setup, SAM proposed switching to denser, more uniform ITO targets. That small change led to significant...Continue Reading
Introduction The semiconductor industry is the backbone of modern-day technology, powering everything from smart phones to artificially intelligent computers. As device sizes shrink and performance requirements expand, materials used in the semiconductor production process must be subjected to more demanding needs. High-purity Cr sputtering targets are now the focal material of this technology enabling high-toughness...Continue Reading
In the semiconductor industry, the demand for smaller, faster, and lower power devices has created a growing demand for advanced materials. High-purity vanadium (V) sputtering targets have also been found to be an essential material in overcoming some of the key challenges in chip manufacturing. With distinguishing features such as excellent conductivity, heat resistance, and...Continue Reading
The insatiable requirement for thinner, faster, and power-saving technologies has made the semiconductor industry one of the prime drivers of technological advancement. Behind the drive is a critical material: high-purity tantalum (Ta) sputtering targets. The targets are a critical ingredient in enabling next-generation semiconductor manufacturing processes, solving dire issues to chip reliability and performance. Tantalum...Continue Reading
In thin film technology, materials need more than just potential—they need consistency, resilience, and performance under pressure. That’s where molybdenum shines. Molybdenum sputtering targets, whether derived from pure metal or alloys, inherit the best of their base: high strength, excellent corrosion resistance, and superior thermal and electrical conductivity. These qualities make molybdenum a trusted material...Continue Reading
If you’re supplying materials into U.S. defense contracts—directly or indirectly—DFARS compliance isn’t optional. It’s mandatory. And with rising geopolitical risk and tighter supply chain scrutiny, contractors are under growing pressure to prove their materials don’t originate from restricted sources like China. At Stanford Advanced Materials (SAM), we specialize in providing DFARS-compliant, non-China, and U.S.-sourced materials,...Continue Reading
1. Introduction Sputtering targets play a central role in physical vapor deposition (PVD) processes, forming the thin functional layers found in semiconductors, optical components, solar panels, and wear-resistant coatings. As industries continue to push for better film quality, consistency, and performance, the demand for advanced sputtering targets grows accordingly. In particular, refractory metals such as...Continue Reading
1. Introduction Refractory metals like tantalum (Ta) and niobium (Nb) play an increasingly important role in thin film technology, particularly for environments that demand both high-temperature stability and corrosion resistance. These two elements, known for their exceptionally high melting points and strong chemical inertness, have found widespread use in advanced protective coatings. As industries such...Continue Reading
Introduction Crucibles are widely used in metallurgy, chemical processing, and a variety of industries. Among these crucibles, graphite crucibles are useful for the smelting of non-ferrous metals and alloys with their desirable properties. Let’s have a detailed discussion about the features, competitiveness, and uses of graphite crucibles. Hope that you can have a better understanding...Continue Reading